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Vibrational energy transfer in fluids 

by DAVID W. MILLER and STEVEN A. ADELMAN 
Department of Chemistry, Purdue University, West Lafayette, 

IN 47907-1393, USA 

A review of several of the available theories of vibrational energy transfer (VET) 
in the gas and liquid phases is presented. First the classical theory of gas phase VET 
mainly due to Landau and Teller, to Jackson and Mott and to Zener is developed in 
some detail. Next the Schwartz-Slawsky-Herzfeld theory, a framework for 
analysing VET data based on the classical theory, is outlined. Experimental tests of 
the classical theory and theoretical critiques of its assumptions are then described. 
Next a brief review of the modern ab-initio quantum approach to gas phase VET 
rates, taking as an example the work of Banks, Clary and Werner, is given. Theories 
of VET at elevated densities are then discussed. The isolated binary collision model 
is reviewed and a new molecular approach to the density, temperature and isotope 
dependences of vibrational energy relaxation rates, due to Adelman and co- 
workers, is outlined. 

1. Introduction 
Vibrational energy transfer (VET) in gases and liquids is a phenomenon of 

particular importance because it provides a relatively simple prototype for chemical 
reaction dynamics. Recent advances in both laser spectroscopy techniques and 
computer simulation capability have generated renewed interest and activity in the 
field. The goal is to develop a comprehensive understanding of VET that extends over 
wide ranges of temperatures, densities and system types. In particular, a theoretical 
framework which permits interpretation of qualitative trends is desired. 

VET divides into two processes: (1) vibrational energy relaxation (VER), in which 
the oscillator undergoes a transition from an excited state to a less excited state with 
energy being transferred from the relaxing mode to the surrounding fluid; and (2) 
vibrational excitation, in which the reverse process occurs. As the rates for these two 
processes are related by detailed balance (see 4 2.4.2), a knowledge of one determines the 
other. 

Early experimental measurements of VET involved ultrasonic absorption and 
dispersion. The basis of this method, first pointed out by Herzfeld and Rice (1928), is the 
slow rate of VET which results in an absorption of acoustic waves. A major drawback 
of this technique is the available frequency range which restricts the accessible 
relaxation times to the nanosecond regime. Thorough reviews of the ultrasound 
method are available in the standard monographs by Herzfeld and Litovitz (1959) and 
Cottrell and McCoubrey (1961). 

A variety of laser spectroscopy techniques capable of measuring an enormous range 
of vibrational lifetimes have supplanted the traditional ultrasound probes. These laser 
techniques employ a two-stage operation: the sample is first excited by a pump pulse 
tuned to the appropriate frequency, and the time evolution of the vibrational 
population is then monitored by a probe pulse. A common procedure involves infrared 
absorption by the sample followed by laser-induced fluorescence detection. A useful 
summary of laser methods relevant to the measurement of VET rates is given by 
Chesnoy and Gale (1984). 
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360 D. W. Miller and S. A. Adelman 

The major focus of this review is the theoretical description of VET. The outline of 
the remainder of this paper is as follows. In $2, we review the classical theories of gas 
phase VET developed by Zener (1931a, b, 1933), Jackson and Mott (1932), Landau and 
Teller (1936), Takayanagi (1963, 1965), Herzfeld and Litovitz (1959), as well as others 
(for example Cottrell and McCoubrey 1961). In $ 3, we discuss modern theories of gas 
phase VET which employ ab-initio potential energy surfaces (PESs) and sophisticated 
quantum scattering methodologies. Singled out for description is the paper by Banks 
et al. (1986) which provides a representative example of work in this area. Section 4 
summarizes the isolated binary collision (IBC) model, currently the most widely used 
model for liquid phase VET. Finally, in $ 5, a brief synopsis of a new approach to gas 
and liquid phase VET, based on the work of our group, is presented. 

We note that the scope of this paper leads to inevitable overlap with the content of 
other reviews. Section 2 on gas phase VET differs from, but makes significant contact 
with, 5 19 and chapter 7 of Herzfeld and Litovitz (1959), chapter 6 of Cottrell and 
McCoubrey (1961), and the reviews by Takayanagi (1963,1965). The greatest overlap is 
with the survey by Rapp and Kassal (1969). The material in $4  on the IBC model 
overlaps the reviews by Chesnoy and Gale (1984, 1988), by Oxtoby (1981% b) and by 
Harris et ~ l .  (1990). 

2. The classical theory of gas phase vibrational energy transfer 
Even in the ideal gas (binary collision) regimen, the problem of developing accurate 

algorithms for the evaluation of VET rates is difficult requiring the use of state-of-the- 
art PESs and advanced dynamical methods. 

Such sophistication was, of course, not possible before the availability of modern 
computers and thus the earliest treatments of VET (Zener 1931a, b, 1933, Jackson and 
Mott 1932, Landau and Teller 1936) were based on crude one-dimensional interaction 
potentials and highly simplified collisional models. Since these early treatments, as well 
as the well known Schwartz-Slawsky-Herzfeld (SSH) (1952) theory (Herzfeld and 
Litovitz 1959) which emerged from them, are closely interrelated, for convenience we 
shall refer to these treatments collectively as the ‘classical theory’ of gas phase VET. 

The classical theory remains of interest for at least two reasons: (1) much of the 
essential physics of VET (e.g. the role of collision time and mass effects and the crucial 
importance of the repulsive forces) is easily identified and discussed within the context 
of the classical theory; and (2) Some of the results of the classical theory, for example 
Landau-Teller plots, are still widely used in the experimental VET literature. 

For these reasons, we present a brief review of the classical theory. Our goal is to 
give an easy-to-read synopsis which emphasizes these aspects of the theory which are of 
greatest contemporary interest. Thus we make no attempt at completeness either in the 
development of the theory or in the citation of the relevant literature. Comprehensive 
reviews of the theory, with very extensive lists of references, are available elsewhere 
(Herzfeld and Litowitz 1959, Cottrell and McCoubrey 1961, Takayanagi 1963, 1965, 
Rapp and Kassal 1969). 

We begin with a brief overview of the theory and synopsis of the contents of this 
section. 

2.1. Overview of the classical theory 
The development of the collision theory of molecular energy transfer processes 

commenced in the earliest days of quantum mechanics (Kallmann and London 1929, 
1930, Oldenberg 193 1, Rice 193 1 a, b, Zener 193 1 a, b). Interest soon focused on VET, 
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Vibrational energy transfer in fluids 36 1 

perhaps because the possibility of measuring VET rates by sound absorption 
experiments had been pointed out by Herzfeld and Rice (1928). 

It was soon realized (Kallmann and London 1929, 1930) that because of the 
strength of molecular interactions the Born approximation was unsuitable for 
molecular collision processes. More useful zeroth-order approximations were sug- 
gested by Mott (1931) and Zener (1931b) who introduced the semiclassical (SC) method 
(# 2.3.2) and by Zener (1931a) who introduced the distorted-wave approximation 
(DWA) (9: 2.3.4). 

Zener additionally introduced the collinear atom-harmonic oscillator repulsive 
exponential potential model (figure 1) which is the basis of the earliest treatments of 
VET. This collinear model was first solved exactly by Jackson and Mott (1932) within 
the DWA ($2.3.4). Zener (1933) then solved the collinear model exactly within the first- 
order perturbation theory SC approximation (# 2.3.2). Here, Zener (1933) also made 
two other important contributions. (1)  He found a close relationship (Q 2.3.5) between 
his SC solution and the Jackson-Mott DWA result; and (2) he gave the first clear 
discussion of the importance of the adiabatic parameter woz, (where coo is the oscillator 
frequency and z, is the collision time) and of the reduced mass of the collision partners 
in determining the VET efficiency. 

The next important development came with the work of Landau and Teller (1936) 
who presented an approximate classical mechanical solution (Q 2.3.1) of the collinear 
model. In their paper Landau and Teller also (1) developed an approximate method 
(9 2.4.3) for performing the Boltzmann average required to evaluate the thermal rate 
constants k(T) for the collinear model (this method yields the widely used 
In [k(T)]  rx T-lI3 Landau-Teller rate formula); and (2) developed a relationship 
equation (2.71 b)  between the VER time TI and the collisional rate constant ko, , (T)  for 
the u = O+u = 1 vibrational transition. 

The next developments came in the 1950s when Takayanagi, Herzfeld and co- 
workers, and others, extended the theory to three-dimensional scattering (# 2.4.4). This 
work is thoroughly reviewed in the book by Herzfeld and Litovitz (1959) and in the 
articles by Takayanagi (1963, 1965). 

Finally all this work was synthesized into a practical prescription for analysing 
VET data, the SSH theory, by Herzfeld and his collaborators (see, e.g. Herzfeld and 
Litowitz 1959). The SSH theory and some experimental tests (Cottrell and McCoubrey 
1961, Millikan and White 1963) are reviewed in ag2.4.4 and 2.5. A critique of the 
classical theory based on the work of Widom (1962), Shin (1964, 1965), Kelley and 
Wolfsberg ( 1  966), Mies ( 1  969, and Secrest and Johnson ( 1  966) is given in Q 2.6. 

2.2. The collinear atom-harmonic diatom collision model 
We begin by specifying the model collision problem which is the basis of the 

classical VET theory. 

C B  CENTRE 
OF MASS 

Figure 1. Model collision system analysed by Landau and Teller (1936), Zener (1933) and 
Jackson and Mott (1932). Atom of mass rnA collides collinearly with a harmonic diatom 
with atomic masses m, and rn, and with circular frequency q,. 
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362 D. W. Miller and S. A. Adelman 

2.2.1. Specijication of the model problem 
We consider a collinear collision between an atom A with a diatomic molecule BC 

which is oriented (figure 1) so that atoms A and B strike one another. The masses and 
coordinates of the three atoms will be denoted respectively by inA, mB and mc, and xA, xB 
and xc- The diatom BC is assumed to be a harmonic oscillator with circular frequency 
0 0 .  

The problem is best formulated in terms of the following generalized coordinates: 
the centre-of-mass coordinate of the system given by 

(2.1 a) 

the relative coordinate which is the displacement of atom A from the centre R,, of mass 
of BC given by 

x" = XA - %& (2.1 b) 

the internuclear separation of BC given by 
- 
y = x s  - xc. (2.1 c) 

In the classical theory the total potential VT(xA, xB, xc) is assumed to be of site-site 

(2.2) 

(or 'dumb-bell') form (Mies 1965), that is 

VAxA, x B ,  ~ c ) =  w A d x A ,  xB) + w ~ x A ,  xc) + w B ~ x B ,  x d  

where w,,, etc., are site-site potentials. The BC site-site potential is just the harmonic 
potential of the diatom, that is 

where Yeeq is the equilibrium value of the oscillator coordinate j j  and where the reduced 
mass p o  of BC is given by 

(2.4) 
mBmC 

mB + mC 
Po=-. 

Given the orientation of the diatom depicted in figure 1 ,  during the interaction 
w A B ~ w A , .  Thus wAc is assumed to be negligible and the interaction potential 

= VT - w,, is taken as 

However, using the definition of X,,, namely 

it follows from equations (2.1 b) and (2.1 c) that x A  - X ,  = 2 - Ay" where 
m, /?.- 

m B + m C  

Thus the interaction potential is given by 

6 = VAB(2 - Ajj). 

VT = U(' + V'B(2 - Afi. 

(2.8) 

(2.9) 

Given equations (2.2), (2.3), (2.5), and (2.8), it folows that the total potential is given by 
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Vibrational energy transfer in &ids 363 

Note that V, in equation (2.9) is independent of the centre-of-mass coordinate X .  
Consequently we may work in a centre-of-mass rest frame in which the collision 
dynamics depends only on the coordinates x" and 9. The energy E of the system is 
therefore the sum of the initial oscillator energy Eo,i and the initial relative kinetic 
energy 

where iTi is the initial relative velocity and where the reduced mass p of the system is 
given by 

E.=' 1 2P c2 i ,  (2.10) 

mA(mR + mC) 
P =  mA + m, + m, 

(2.1 1) 

2.2.2. Reduced variable description of Secrest and Johnson 
Secrest and Johnson (1966) have shown that with an appropriate choice of reduced 

quantities the model problem can be further simplified. Specifically (referring to 
equations 2.12 and figure 2) it can be rigorously converted into the collision of a 
fictitious atom of mass m and coordinate x off a fictitious atom of unit mass and 
coordinate y,  the latter being harmonically bound, with unit circular frequency, to a 
rigid wall. This conversion significantly aids in the comprehension of VET dynamics. 

Secrest and Johnson (1966) introduce the following reduced quantities (our 
notation differs slightly from theirs): 

(9 - 9eqh  (2.124 

(2.12b) 

(2.12e) 

Note that E and V ( x - y )  are the energy and interaction potential, respectively, of the 
system measured in units of the vibrational level spacing of BC, ha,. 

2.2.3. Linear expansion of the interaction potential 
Note that the coordinate y defined in equation ( 2 . 1 2 ~ )  is a dimensionless 

displacement of BC from vibrational equilibrium. In the classical theory it is assumed r Equilibrium Position 

L x , !  

Figure 2. Fictitious atom-oscillator collision system. An 'atom' of mass in = [rnB(rnA + inB 
+ rn,)]-lrnAm, collides with a fictitious bound harmonic oscillator with unit mass and 
unit circular frequency. The fictitious system may be derived from the real collision system 
in figure 1 by the transformation (equations 2.12) of Secrest and Johnson. 
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364 D. W. Miller and S. A. Adelman 

that during the collision the vibrational displacement of BC is sufficiently small that the 
following linear order expansion of V(x - y )  is valid: 

F(x)- -( W X - Y )  dy ) = Vyx).  
y = o  

(2 .13~)  

(2.13b) 

2.2.4. The repulsive exponential interaction potential 
The collision time arguments of Zener (1933) mentioned earlier suggested that the 

energy transfer dynamics were dominated by the steep repulsive wall of the interaction 
potential. (In modern language (Adelman et al. 1933a-c) the Fourier components of the 
vibrational force F[x(t)] at the high frequencies important for VET are dominated by 
the repulsive wall since near the wall F[x(t)]  varies most rapidly in the time domain.) 
Because of the assumed importance of the wall a purely repulsive interaction potential 

(2.14) 

was employed in the most important early treatments of VET. 

follows from equations (2.12) and (2.14), as 
The corresponding repulsive exponential form for the reduced potential V(x - y) 

V(x - y )  = A exp [ - ~ ( x -  y ) ] ,  (2.1 5)  

where A =(ho)-'A" and where 

(2.16) 

Comparing equations (2.13) and (2.15) yields the following linear order expansion of 
the repulsive exponential potential: 

V(x - y )  = A exp (- ax) - yF(x) ,  (2.17) 

where 

F(x)  = - aA exp ( -ax). (2.18) 

2.3. Approximate solutions of the collinear collision model 
We next summarize approximate classical, SC and quantum solutions of the 

collinear collision model. 

2.3.1. Classical mechanics: the treatment of Landau and Teller 

Teller (1 936). 

system: 

We begin with the approximate classical mechanical treatment of Landau and 

Our starting point is the following exact expression for the total energy E of the 

(2.19~) E = +X""t) + +p,$'(t> + ;p,o;(jj - yeq)' + V;,[z(t) - A m ) ] .  
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Vibrational energy transfer in fluids 365 

Transforming to the reduced variables of equations (2.12), equation (2.19 a) may be 
rewritten in dimensionless form as (cf. figure 2) 

(2.19 b) 

where z = mot and where $7) = dx (z)/dz and j ( z )  = dy (z)/dz. 
In the treatment of Landau and Teller (1936) the potential in equation (2.17) is 

employed and the effects of oscillator motion on the dynamics of the incident atom are 
neglected since the oscillator is kept at equilibrium during the collision. These 
approximations permit an analytical treatment of the energy transfer dynamics. Within 
these approximations the reduced classical equations of motion become 

d2x(z) 
dz 

m = F[x(z)J 

and 

d2y(z) = - y(z) - J“x(z)J, 
dr2 

(2.20 a) 

(2.20 b) 

where F(x) is defined in equation (2.18). 
The Landau-Teller ( I  936) result, equation (2.37), for the energy transfer AcLT, is 

obtained by solving equations (2.20) in two steps. Firs: equation (2.20 a) is solved to 
obtain x(z) and, hence, F[x(z)]. Second, using this result for F[x(z)], equation (2.20b) is 
solved to obtain AcLP 

To perform the first step, we begin with the energy conservation expression 

&.=-=L ‘i zrni2(z) + v[X(~)J. (2.2 1) 
‘ - h i 0  

In equation (2.21), Ei is defined in equation (2.10) and 

V(x) = A exp (-ax). (2.22) 

From equations (2.21) and (2.22) it follows that 

or equivalently 

dx 
xg [ l  - (A/~~)exp(-ax)]”~’  (2.23) 

where xo and to will be specified later. To perform the integration in equation (2.23) we 
define a new variable u by 

A 

&i 
u-  = - exp (- ax). 

Equation (2.23) may then be rewritten as 

(2.24) 
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366 D. W. Miller and S. A .  Adelman 

which upon integration yields 

The above equation may be inverted to give 

u(z) = cosh ct 2 (z - zo) + cosh- uO]. [ (;m)lii (2.25) 

We next specify xo and zo. We take xo to be the classical turning point of x(z) and zo 
to be the time at which the atom reaches xo. From equations (2.21) and (2.22) it then 
follows that xo is determined by the equation 

E~ = V[x(zo)] = V[xO] = A exp (- axo). (2.26) 

Comparing equations (2.24) and (2.26) then yields 

A 
uo2 =-exp ( -  axo) = 1. (2.27) 

Bi 

Hence uo = 1 and cosh- uo = 0. Moreover we are free to choose the time origin so that 
zo = 0. With these simplifications, equation (2.25) reduces to 

(2.28) 

Comparing equations (2.1 S), (2.24) and (2.28) then yields the required result for F[x(z)]: 

F[X(t)] = - MEi sech2 [ct(“)”’.], 2m (2.29) 

(2.30) 

We next turn to the determination of the energy transfer. We begin by solving 
equation (2.20 b) to yield 

y(z)=cos(z-zi)y(zi)-ssin (.-zi)Jj(zi)+ 

where 
F ( z )  = - F[x(z)] =mi sech2 (&viz), 

z’)F(z’) dz’, (2.31) 

(2.32) 

where zi = - 00 is the time at which the collision commences, and where we have used 
equations (2.29) and (2.30) to obtain equation (2.32). The collisional energy transfer to 
the oscillator is 

A E = E C ; O - E ~ . ~ = ~ [ J ~ ~ ( ~ O ) + ~ ~ ( ~ O ) ] - - [ J ~ ’ ( Z ~ ) + ~ ~ ( Z ~ ) ] .  (2.33) 

This energy transfer may be evaluated from equations (2.31) and (2.33). A brief 
calculation which uses the fact that 9( - 7) = F(z) yields 

A& = qo +terms linear in y(ri) and j(zi), (2.34) 

where 

(2.35) 
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Vibrational energy transfer in fluids 367 

The Landau-Teller energy transfer AELT is defined as the mean of AE over the uniform 
distribution of initial oscillator phases. The phase-averaged values of y(zi) and j(zi) are, 
however, zero. Thus it follows from equation (2.34) that 

A&,, = ?o. (2.36) 

Using equation (2.32) in equation (2.35) and performing the Fourier transform 
yields the following expression for 

cosech2 (k). 2n2m2 
= ~ 

M 2  
(2.37) 

Equation (2.37) gives the energy transfer of the fictitious system in figure 2. The 
energy transfer of the real system in figure 1 may be obtained from equation (2.37) using 
the transformations given earlier. The result is 

AE,, = ko, AE,, = 2a20;L2 ' A cosech'(_), awoL 
P O  

(2.38) 

where the initial relative velocity Ci is defined in equation (2.10). For typical collision 
energies, nw,L/V">> 1, equation (2.38) becomes 

(2.39) 

Note that the collision time z, z L&. Thus equation (2.39) shows that AEL, is an 
exponentially decreasing function of the adiabatic parameter woz,. This behaviour is in 
accord with the qualitative arguments of Zener (1933) mentioned earlier. Similar 
arguments were also presented by Landau and Teller (1936). 

2.3.2. Semiclassical mechanics: the jrs t -order solution of Zener 
Within the SC approximation, the relative motion of the system is evaluated using 

classical mechanics while the collisional transition probabilities of its internal degrees 
of freedom are computed from the time-dependent Schrodinger equation. 

We next summarize Zener's ( 1  933) SC solution of the collinear atom-harmonic 
diatom collision problem. Zener's treatment is a SC analogue of the classical Landau- 
Teller (1936) calculation. Thus, within Zener's theory, the classical motion of the 
relative coordinate occurs in the repulsive exponential field produced by the fixed 
oscillator while the vibrational transition probabilities are evaluated using the 
linearized potential equation (2.17). The time-dependent Schrodinger equation for the 
vibrational motion thus (in reduced units) takes the following form: 

where the interaction potential is given by 

VO(Y, .) = ~ yFL-x(41= Y W ) ,  

(2.40) 

(2.41) 

where P ( z )  is given in equation (2.32). 
For simplicity, when discussing vibrational excitation, we shall assume that the 

diatom is initially in its ground (u=0) vibrational state. Thus we shall focus on the 
probabilities for the v = 0-v = n transitions. Following Zener (1 933), we shall evaluate 
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368 D. W. Miller and S. A. Adelman 

these transition probabilities via a first-order perturbation solution of equation (2.40) 
and hence assume that the weak-coupling limit, Vo(y, z) 4 $y2, holds. 

Applying standard first-order time-dependent perturbation theory (for example 
Cohen-Tannoudji et a/. 1977) to equations (2.40) and (2.41) yields the following result 
for the transition probability pOJ&):  

(2.42 a)  

where the functions { bn(y)} are the stationary-state vibrational wavefunctions of the 
diatom. These satisfy the following Schrodinger equation: 

(2.43) 

where 

~ ~ , ~ = n + t ,  n=O, 1,2 ,... . (2.44) 

Evaluating the harmonic matrix element (+nly14,) in equation (2.42 a)  and using 
equation (2.35) yields the required result for the transition probability: 

PO, n(E) = d n ,  1 V O .  (2.42 b) 

Equation (2.42 b) shows that, within the present treatment, only single quantum 
transitions are allowed. To complete the calculation we evaluate yo for the repulsive 
exponential interaction. Comparison of equation (2.36) and (2.37) yields 

yo =- 2n2m2 cosech’ (E). 
ci2 

(2.45) 

Equations (2.42 b) and (2.45) are equivalent to the result of Zener (1933). 

2.3.3. Comparison of classical and semiclassical treatment 
Following Takayanagi (1963) and Rapp and Kassal(1969), we next compare the 

results of the Landau-Teller and the Zener treatments. To do this we evaluate the 
collisional energy transfer AE to the oscillator from the Zener transition probabilities 

We note that, if a transition v=O-+v=  n is made, the energy transfer to the oscillator 
is, from equation (2.44), A E ~ , ~  - E ~ , ~  - c0, = n. Thus the energy transfer averaged over 
an ensemble of collisions each with energy E is 

P O , n ( E ) -  

(2.46) 

Comparing equations (2.42 b) and (2.46) then yields the Zener energy transfer as 

AEZener = V O .  (2.47) 

= Thus the Landau- However, comparing equations (2.36) and (2.47) gives 
Teller and the Zener energy transfers are identical. 

2.3.4. Quantum mechanics: the distorted-wave solution of Jackson and Mott 
We next turn to the DWA treatment of Jackson and Mott (1932). 
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Vibrational energy transfer in fluids 369 

We begin with the time-independent Schrodinger equation for the collision system 
which, in reduced variables, is 

(2.48) 

We next describe the DWA. Since complete developments of the DWA are 
available in standard textbooks (for example Messiah 1966) we shall limit ourselves 
here to a brief synopsis. As before, we shall restrict ourselves to the u = O + l i = i z  

transitions. For these transitions, energy conservation, together with equations (2.44), 
yields the following results for the initial and final relative kinetic energies: 

E i E $ K i = E - i ,  E f - 2 K n  = L  2 -  --E-(n++). (2.49) 

We further note that the system wavefunction may be exactly expanded as 
50 

Yx,  Y)= C 45J~Fn,(x)7 (2.50) 

where the functions c&(y) are the harmonic oscillator eigenfunctions of equation (2.43) 
and where the FJx)  are scattering wavefunctions for asymptotic relative kinetic 
energies +K,’. = E - (n’ + 4). 

An infinite set of coupled differential equations for the scattering wavefunctions 
Fn.(x) (the standard ‘close-coupled’ equations) may be straightforwardly derived from 
equations (2.48) and (2.50). Determination of the F,,(x), by solution of these equations, 
gives Y(x, y) from equation (2.50) and hence the transition probabilities po&). 

The DWA may be regarded as an approximate decoupling of the infinite set of 
equations. For the present purposes, it is sufficient to note that within the DWA the 
transition probabilities pO&) may be evaluated from the solutions F!,?)(x) of fully 
decoupled versions of the original equations. Specifically, the F$)(x) satisfy 

n’=O 

The DWA transition probabilities are then given by 

(2.5 1) 

(2.52) 

where 

A = J dx 1 dY [Fko)(x)$n(Y) AVX, y )  ~ b o ) ( x ) ~ 0 ~ ) 1 ,  (2.53) 
- m  - m  

and where 

A V(X, y )  = V(X - y) - V(X). (2.54) 

Note that, as in the Landau-Teller (1936) and Zener (1933) treatments, the DWA 
solution is expressed in terms of the elastic scattering off a fixed oscillator. However, in 
contrast with the earlier treatments, the DWA includes the effects of energy 
conservation (since FbO)(x) describes scattering with the relative kinetic energy ci while 
Fio)(x) describes scattering with the relative kinetic energy E ~ ) .  We shall return to this 
point later. 
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370 D. W. Miller and S. A .  Adelman 

Given this outline of the DWA, we next turn to the treatment of Jackson and Mott 
(1932). This treatment is based on the linearized potential of equations (2.17) and (2.18). 
For this potential, AV(x, y),  defined in equation (2.54), becomes 

A V(x, y )  = aA exp ( - ax) y.  (2.55) 

Comparison of equations (2.52), (2.53) and (2.55) then yields 

To complete the calculation, we must solve equation (2.51) (subject to appropriate 
boundary conditions) for V(x) = A exp (- ax) to obtain Fbo)(x) and Fio)(x) and then 
perform the integral in equation (2.56). Jackson and Mott (1932) show this calculation 
can be carried out analytically to yield (in our notation) 

8n2m2 sinh (nq,,) sinh (nq,) 
P O , n ( & ) = -  a2 [cosh (zq0)- cosh (nqn)I2 "' 

where 

(2.57) 

(2.58) 

2.3.5. Zener's comparison of the jirst-order semiclassical and distorted-wave transition 

Zener (1933) pointed out that a close relation exists between his first-order SC result 
for the transition probability, equation (2.42 b), and the corresponding Jackson-Mott 
(1932) result, equation (2.57). We next briefly review his argument. 

To establish the connection, we specialize the Jackson-Mott result to the 
classical limit for the relative motion. This limit holds if nq0(,,)9 1. In this limit, 
sinh (nq0(,,J = cosh (nq0(,,J =$exp (nq0(,,)) and the Jackson-Mott formula reduces as 
follows: 

probabilities 

~ X P  C&(qo-qn)I-ex~ C-iNqo-qn) ) - 2 .  
2 

It then follows from the above equation and equation (2.58) that 

However, 

where the final equality follows from equation (2.49). Using the above expression, 
equation (2.59) may be rewritten as (since n= 1 for the allowed transition) 

(2.60) 
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Vibrational energy transfer in fluids 37 1 

Finally defining the initial and final relative velocities by (cf. equations 2.30 and 2.49) 

(2.61) E.  , = l l c 2  o-2mv’, - 1 Ef=+ic:=&mv;, 
equation (2.60) may be re-expressed as 

where 
27 = g v i  + O f ) .  

(2.62) 

(2.63) 
Note that V is the mean of the initial and final velocities. 

Equation (2.62) is the SC limit of the Jackson-Mott (1932) DWA result. Note that it 
bears a strong resemblance to Zener’s (1933) SC result, which from equations (2.42 b) 
and (2.45) is 

cosech2 (&). 27c2m2 
Po,  n k )  = 8“. 1 7 (2.64) 

Equations (2.62) and (2.64) differ only in that the SC result involves the initial velocity ui 
while the DWA result involves the symmetrical velocity 6. This difference reflects the 
fact that only the DWA treatment accounts for energy conservation. 

For ci =+mvz % 1, the initial relative kinetic energy is much greater than the energy 
transferred to the oscillator and, hence, vf zz vi. Thus, in the high-energy limit, the 
Jackson-Mott and Zener expressions for p O J & )  become identical, and all three simple 
theories (Landau and Teller 1936, Zener 1933, Jackson and Mott 1932) yield identical 
results for the energy transfer to the oscillator. 

This completes our review of the zeroth-order dynamical treatments, 

2.4. A framework of analysing vibrational energy transfer data 
We next provide a synopsis of the efforts that have been made to convert the results 

of the zeroth-order treatments into a framework for analysing VET data. A 
comprehensive review of this work is given in section 19 and chapter 1 17 of the book by 
Herzfeld and Litovitz (1959). 

In this discussion we express all results in terms of the real variables of the collision 
system. Thus, for example, the DWA result for p o ,  given in reduced variables in 
equations (2.62) and (2.63), will be re-expressed as 

(2.65) 

where w is defined by 

w = &fii + fif), (2.66) 

and where fii and fif are the initial and final relative velocities defined, as in equation 
(2.10), by 

+pij& = Eio- 

Note that fii and tTf are related (by energy conservation) by 

(2.67) 

We next turn to the definition of the thermal rate constant ko, , (T)  for the 
v=O+v= 1 excitation. 
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372 D. W. Miller and S. A. Adelman 

2.4.1. The thermal rate constant k, , ,(T) 
To define k,, ,( T) ,  we first define the thermal transition probability p o ,  ,(T) by 

(2.69) 

where P(ci) is the Maxwell velocity distribution function. The rate constant is then 
defined as 

ko, 1(T)=Z(T)Po, l(TL (2.70) 

where Z( T )  (available from the kinetic theory of gases) is the total number of A + BC 
collisions that a BC molecule experiences per second. 

2.4.2. The Landau-Teller theory of the relaxation time TI 

collinear collision system. Their result is 
Landau and Teller (1936) have developed an expression for the VER time of the 

T ,  = k l ,  o m  - ko, l(n (2.71 a) 

where ko, ,(T) is the rate constant for excitation, defined in equation (2.70), and where 
k,, ,(T) is the rate constant for the inverse (u= 1 -+u=O) de-excitation process. Since 
k,,,(T) is determined in terms of ko, , (T)  by detailed balance as 

the following alternative forms for T,: 

and 

(2.72) 

(2.71 b) 

(2.71 c) 

are also valid. 
Equation (2.71 b) permits evaluation of T, from ko. ,(T) and hence, ultimately, from 

the DWA result equation (2.65). Equation (2.71 c) shows that for typical oo, except at 
elevated temperatures, T ;  ’ is essentially identical with the de-excitation rate constant 

We next discuss the method of derivation of equations (2.71) and (2.72). Since the 
actual derivation of Landau and Teller (1936) is somewhat involved, we shall outline 
here a similar but simpler derivation, valid for a two-state ‘oscillator’ with energy levels 
E ,  =&oo and El =$hw,. This two-level problem has also been discussed by Herzfeld 
and Litovitz (1959) and Rapp and Kassal (1969). 

Let no(t) and nl(t) be the number density of ‘oscillators’ in the ground state and 
excited state respectively at time t .  Denote the corresponding equilibrium number 
densities by and nl,eq. 

k 1, ,(TI. 

Consider the excess vibrational energy relative to equilibrium: 

~ ~ ~ ~ ~ - ~ ~ ~ 0 C ~ , ~ ~ ~ - ~ 0 , . , 1 + 3 ~ ~ 0 C n , ( t ) - ~ 1 ,  esl. (2.73) 
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Vibrational energy transfer in fluids 373 

Our goal is first to show that AE(t) decays according to an exponential relaxation law, 
namely 

(2.74) 

and second to relate the relaxation time Tl in equation (2.74) to the rate constants 

To proceed further we assume, following Landau and Teller (1936), that no(t) and 
ko, ,(TI and k l , O ( O  

nl(t) obey simple rate equations, namely 

and 

(2.75 a) 

(2.75 b) 

At equilibrium, dno(t)/dt = dn,(t)/dt = 0  and either of equations (2.75) yields 

ko, l(T)no,eq= kl,dT)nl,eq? (2.76) 

a result which is the basis of the detailed balance condition equation (2.72). A second 
consequence of equations (2.75) is that d[no(t) + n,(t)]/dt = 0 or equivalently that 

ndt) + n,(t)= nO,eq + nl ,eq- (2.77) 

Using equations (2.76) and (2.77) to eliminate no@) and no,,, from equation (2.75 b) 
then yields 

Moreover, using equation (2.77), equation (2.73) becomes 

AE(t) = hmoCnl(t) -nI, eq l -  (2.79) 

Tt then follows immediately from equations (2.78) and (2.79) that 

-- dCAE(t)l - - [kO, , (T)+k, , , (T)]  AE(t). 
dt 

(2.80) 

Equation (2.80) is identical in form with the required result equation (2.74). Moreover, 
as required, the relaxation time is determined in terms of rate constants, that is 

T ; '=k l ,o (~ )+ko , , (n  (2.8 1) 

(Note that the two-state system result for T,, equation (2.81), differs from the harmonic 
oscillator result, equation (2.71 a). The difference is, however, only significant at high 
temperatures.) 

2.4.3. Determination of the temperature dependence of TI by the Landau-Teller thermal 

We next determine the temperature dependence of Tl. Our procedure is to 
determine ko, ,(T) from equations (2.65), (2.69) and (2.70) and then to evaluate Tl from 
equation (2.7 1 b). This requires the evaluation of the thermal average in equation (2.69), 

averaging procedure 
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374 D. W. Miller and S. A. Adelrnan 

which defines po,  ,(T) in terms of po,  1(t7i). We perform this thermal average by Laplace 
integration following Landau and Teller (1936). The justification for this asymptotic 
integration is that P(&) and p, ,  1(t7i) are rapidly decreasing and rapidly increasing 
functions, respectively of fii and thus one expects the integrand in equation (2.69) to be 
sharply peaked at a ‘most effective’ collision velocity v*. 

In their original calculation, Landau and Teller ignored energy conservation and 
thus set = fif = w. This approximation is valid (see equation 2.68) in the high-energy 
limit Ei =+pfi? 9 ho,. To illustrate the Landau-Teller procedure, we first perform the 
thermal average in this high-energy limit. Then, following Herzfeld, we extend the 
calculation to include a first correction for energy conservation. We thus, initially, 
approximate equation (2.65) by 

(2.82) 

In their calculation, Landau and Teller additionally assume the limit 
oat, x 7~co,L/t7~ 9 1 obtains. Then equation (2.82) further simplifies to (cf. equation 2.39) 

(2.83) 

The Laplace evaluation of p, ,  ,(T) is now straightforward. Using the explicit form 

equations (2.69) and (2.83) yield (the superscript 0 indicates Ei 9 hw) 

where 

with 

r m  
I(T) = exp [ - A(4)] dCi, 

0 

l p $  2no,L A ( q )  = - ~ + -. 
2k,T ti 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

Within the Laplace method, A(Ci) is approximated by the quadratric order expansion 
A(lji) x A(v*) +&4”(v*)(fii - u*)?, where v* is determined by the condition A’(v*) = 0 or 
equivalently, using equation (2.87), 

pv* 2no,L _ _ -  
k,T= (u*)~  a 

Solving equation (2.88) yields 

.*=( 271w0LkB 3 113 . 

(2.88) 

(2.89) 

Next using the quadratic expansion of A(&), equation (2.86) may be integrated to yield 

Z(T)= (A#;*))1‘2exP - C-A(v*)I. (2.90) 
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Vibrational energy transfer in Puids 375 

A(u*) and A"(u*) in equation (2.90) may be evaluated from equations (2.87H2.89) as 

3 p(u*)2 3 47c2w;Lzp 1/3 A(u*)=----  
2 k,T -2( k ,  ) T - ' / 3  

and 

3P A"(u) = __ 
k,T' 

(2.91 a) 

(2.91 b) 

Comparing equations (2.85), (2.90) and (2.9 1) then yields the Landau-Teller result 

where 

and 

(2.92) 

(2.93) 

(2.94) 

Note that equation (2.92) exhibits the familiar Landau-Teller In Poc T -  1/3 temperature 
dependence. 

The Landau-Teller result, equation (2.92), since it neglects conservation of energy, 
is invalid unless the temperature is sufficiently high that ; p ( ~ * ) ~  $ ho,. We next describe 
the introduction by Herzfeld and Litovitz (1959) of a correction for energy 
conservation. 

We thus begin with the 'exact' form for p,,  '(Ci) (equation 2.65), which includes the 
effects of energy conservation. Specializing equation (2.65) to the limit ooz, $ 1 yields 
(cf. equation 2.83) 

(2.95) 

where w is defined in equation (2.66). We next turn to the energy conservation 
condition, equation (2.68), which may be rewritten as 

(2.96) 

For excitation Ei =$u: b h a ,  which equals the threshold energy. Thus the following 
power series expansion of equation (2.96) holds: 

(2.97) 

Within the Landau-Teller treatment it is assumed that Cf = 4. Herzfeld and Litovitz 
include the first correction term in equation (2.97) and thus take 

(2.98) 
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376 D. W. Miller and S. A. Adelman 

Equation (2.98) implies the following approximation for the symmetrized velocity w 
defined in equation (2.66), w = fii -&~,/pfi? Hence 

Using this last result in equation (2.95) yields the Herzfeld-Litovitz approximation for 
the transition probability: 

(2.99) 

where is the Landau-Teller expression given in equation (2.83). The Herzfeld- 
Litovitz approximation to the thermal transition probability po, ,(T) may be obtained 
by combining equations (2.69) and (2.99) and then using Laplace integration to perform 
the thermal average. This yields 

(2.100) 

where the Landau-Teller result pb,),( T) is defined in equations (2.92H2.94). Finally 
using equation (2.88), equation (2.100) simplifies to 

(2.101) 

Given equation (2.101) it is now straightforward to obtain an expression for the 
VER time TI. Comparing equations (2.70), (2.71 b), (2.92) and (2.101) yields 

T ;  = A(T)exp (-p U +;), 
where 

and where 

(2.102) 

(2.103) 

(2.104) 

Note that the inclusion of energy conservation by Herzfeld and Litovitz modifies the 
Landau-Teller T-'I3 exponent by introducing a correction term b/T with a T-'  
temperature dependence. 

2.4.4. The Schwartz-Slawsky-Herzfeld theory 
We next briefly describe the SSH theory (Schwartz et ul. 1952) which is a practical 

framework for analysing VET data based on the fundamental theory reviewed here. To 
obtain this framework, SSH provided simple ways (1) to include the effect of attractive 
forces; (2) to choose the interaction potential parameters; and (3) to include effects 
arising from the non-collinear nature of the collisions. 

To include attractive forces, the repulsive exponential interaction potential of 
equation (2.14) was modified by adding a constant of magnitude -8, where 8 is the 
Lennard-Jones well depth of the collision system. This yields a modified potential of 
the form 

(2.105) 
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Vibrational energy transfer in fluids 377 

This modification changes the TI expression in equation (2.102) to the following 
expression: 

T;'=A(T)exp -p+T+T , ( a 
where 

€ 
c=-. 

k B  

(2.106) 

(2.107) 

The method of choosing the interaction potential parameter d was just mentioned. 
To choose the repulsion parameter L, SSH fitted the potentials U,,,(Z) to Lennard- 
Jones potentials (Hirschfelder et al. 1954) derived from viscosity measurements. They 
suggested two simple methods for making the fits. Both methods yielded 

0 
- z 1 7-20 
L 

(2.108) 

for a range of molecules, where D is the Lennard-Jones diameter of the system. 
Three-dimensional collision effects were introduced via approximate procedures 

reviewed in detail by Takayanagi (1963, 1965). Since these methods are somewhat 
complex, they will not be further described here. The net effect of including these three- 
dimensional effects is to modify the pre-exponential factor A(T) in equation (2.106) but 
to leave the exponential unchanged. The final result of the SSH theory, including the 
three-dimensional corrections, is given by equations (62.16) and (64.25) in the book by 
Herzfeld and Litovitz (1959). 

2.5. Experimental tests of the classical theory 
We next briefly discuss some of the experimental tests of the classical theory. We 

begin with the correlation of Millikan and White (1963). 

2.5.1. The Millikan-White correlation 

b=O in equation 2.102) 
The Landau-Teller (1936) prediction of the temperature dependence of TI is (set 

(2.109) a 
In TI = ~ 1 / 3  - In CA(TI1, 

where, from equation (2.93), 

(2.1 10) 

Millikan and White tested the Landau-Teller prediction by logarithmically plotting a 
large number of experimental results for TI against T 113. They found good linear plots 
for 12 simple energy transfer systems over a temperature range from room 
temperature to several thousand kelvins. 

While confirming the In TI K T-'13 prediction, they did not confirm the Landau- 
Teller prediction (see equation 2.1 10) that the parameter a ~ 0 2 , ~ ~ L ~ ~ ~ p ~ ' ~ .  Instead the 
corresponding parameter in their correlation has an w$3p1/2 dependence. 

2.5.2. Tests of the Schwartz-Slawsky-Herzfeld theory 
We next turn to specific tests of the SSH theory. Such tests have been performed by 

Schwartz et al. (1952), McCoubrey et al. (1961), Dickens and Ripamonte (1961), 
Tanczos (1956), Herzfeld and Litovitz (1959) as well as others. A good discussion of the 
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378 D. W. Miller and S. A. Adelman 

results of these comparisons is given on pp. 158-164 of the book by Cottrell and 
McCoubrey (1961). We shall restrict ourselves here to a summary of their main points. 
These are as follows. 

(1) The energy conservation and attractive force corrections to the Landau-Teller 
result for TI (the terms b / T + c / T  in the exponent of equation 2.106), must be 
included in order that the exponential repulsion parameters L required to fit 
the VET data be in reasonable agreement with those obtained from viscosity 
measurements. 

(2) For a number of diatomic and triatomic systems, the relaxation times 
computed from the SSH theory are in rough order-of-magnitude agreement 
with experiments. 

2.6. Critique of the classical theory 
We next give a discussion, based on results available in the literature, of the validity 

of several of the key assumptions of the classical theory. We begin with a synopsis of the 
work of Widom (1962) and Shin (1964, 1965). 

2.6.1. The analysis of Widom and of Shin 
The analysis of Widom (1962) and Shin (1964, 1965) permits one to examine the 

following question. How strongly is the SSH form of the temperature dependence of TI 
tied to the form of the interaction potential? In particular, is the Landau-Teller T -  1/3 

temperature dependence a consequence of the assumed repulsive exponential interac- 
tion potential or does it have more general validity? 

Widom and Shin evaluated the exponential contribution to the DWA matrix 
element appearing in equation (2.56) in the SC (Wentzel-Kramers-Brillouin) limit 
using a procedure due to Landau (1932). Within this formulation the analysis which 
leads to equation (2.102), could be extended to potentials other than the repulsive 
exponential potential. In particular, analytical results for the high-temperature 
expansion of In TI were obtained for the Morse and Lennard-Jones potentials. 

From the present standpoint, the main results obtained by Widom and by Shin are 
as follows. 

(1) For all potentials studied, the leading term in the high-temperature expansion 
of In Tl is very similar to the Landau-Teller term. 

(2) For all potentials studied an energy conservation term identical with the bT-  ' 
term appearing in equation (2.106) is found. 

(3) The higher-order correction terms in the In Tl expansion are specific to the 
potential and may differ significantly from the attractive force term b/k,T 
proposed by SSH. 

2.6.2. Mies' test of the model potential 
Mies (1965), using the He-H, system as a prototype, examined a number of the 

main assumptions of classical VET theory. His basic procedure was to compare results 
predicted by the model potential utilized in the classical theory with corresponding 
results computed from a He + H, Hartree-Fock potential (Krauss and Mies 1965). The 
model potential in question is equation (2.9), with VAB(2-A$) approximated by a 
linearized repulsive exponential, with range parameter L determined from viscosity 
potentials, and with U ( 8  taken as harmonic as in equation (2.3). 
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Vibrational energy transfer in jluids 379 

Some of the main conclusions of Mies (1966) are as follows. 

( 1 )  Viscosity potentials, since they are sensitive to glancing collisions which do not 
adequately probe the repulsive wall of the potential, provide a very poor basis 
for VET studies. (This point has also been made by other workers, such as Rapp 
and Kassal1969.) For example, for the He-H, system, transport measurements 
yield L=0*140.17A while the value of L obtained by fitting a repulsive 
exponential to the Hartree-Fock potential of Krauss and Mies (1965) is 
L = 028 A. 

(2) The model potential if determined in the standard manner (Herzfeld and 
Litovitz 1959) contains no information about the vibrational coordinate 
dependence of the real potential. Thus the model potential can lead to very 
poor results for the vibrational force F(x) defined in equation (2.13 b). It is this 
vibrational force, however, which determines the energy transfer within the 
Landau-Teller (1936) and Zener ( 1  933) treatments. 

(3)  The neglect of anharmonic effects and the linearization of the interaction 
potential can lead to  serious errors in the evaluation of DWA matrix elements. 

These results of Mies (1966) are summarized in the table and figure 3. In particular 
from the table, it is evident that the DWA transition probabilities using the standard 
assumptions of the SSH theory (case F) are orders of magnitude larger than the 'exact' 
DWA transition probabilities (case A). 

2.6.3. The Kelly-Wolfsberg-Secrest-Johnson tests of the dynarnical approximations 
The study of Mies (1965), while providing useful information concerning the 

validity of the potential model used in the classical theory, provides no information 
about the validity of its dynamical approximations. This is because Mies' calculations 
are all made within the DWA framework. 

Tests of the dynamical approximations are, however, available in the literature. 
Specifically the exact collinear atom-diatom classical trajectory studies of Kelley and 
Wolfsberg (1 966) permit a test of the Landau-Teller (1936) model. Similarly, the 

Table 1. Distorted-wave VET probabilities p o ,  for collinear He-H, collisions. Case A: exact 
Morse oscillator results computed from a Hartree-Fock (Krauss and Mies 1965) 
interaction potential. Case B: same as case A, except the interaction potential is a site-site 
repulsive exponential fit (equations 2.9 and 2.14) to the HartreeFock potential. Case C: 
same as case B, except the oscillator is harmonic and the interaction potential is linearized 
as in equation (2.13). Case F: same as case C except the exponential repulsion parameter L 
is obtained from viscosity potentials. Case F corresponds to the standard SSH theory. 
(Reproduced from table I 5 of Mies (1 965).) 

Po, I(&) 

Case E =  1-5 ~ = 3 . 0  

A 7.24 ( - 8) 9.34 (- 5) 
B 3.50(-7) 1.39(-4) 
C 3.99 (- 5) 2.62 ( - 2) 
F 1.38 (-2) 6.77 (- 1 )  
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E 
Figure 3. Energy dependence of the v=O-+u= 1 transition probabilities p o ,  calculated by 

Mies for cases A-C specified in table 1. (Reproduced from figure 5 of Mies (1965)) 

corresponding exact quantum calculations of Secrest and Johnson (1966) permit a 
complementary test of the Jackson-Mott ( 1  932) model. 

One of the most important points brought out by these exact calculations is that the 
simple theories can seriously overestimate energy transfer because they neglect 
oscillator deformation. Moreover, this overestimation due to neglect of deformation 
can be severe even when the energy transfer is very small. Thus, for example, the DWA 
can break down very badly even at low collision energies. 

As one would expect from figure 2, this type of breakdown becomes increasingly 
severe as the mass parameter m increases. For example, Kelley and Wolfsberg (1966) 
find for their model system 4 (mA = 2 and mB = rn, = 24), for which m= 0-04, that the 
ratio RCM of Landau-Teller energy transfer AELT to exact classical energy transfer 
AEcM equals 1-07. In contrast, for their model system 26 (mA = 12, mB = 1 and m, = 13), 
for which m =  6, R falls in the approximate range 102-105. At low energies, the results of 
Kelley and Wolfberg may be summarized by the empirical relation 

(2.1 1 1 )  

Secrest and Johnson (1966) found an analogous empirical relation valid at low 
energies, namely 

=exp (1.685m). AEJM 
QM - A E ~ M  

R -- (2.1 12) 

where RQM is the ratio of the Jackson-Mott (1932) energy transfer to exact quantum 
energy transfer. Secrest and Johnson also find (their figure 7) the expected breakdown 
of the DWA at high energies due to the failure of first-order perturbation theory. 

2.7. Concluding remarks 
The classical theory is, in essence, an asymptotic theory aimed at describing high- 

energy VET processes for which the energy transfer may be parametrized in terms of a 
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Vibrational energy transfer in @ids 381 

few quantities which characterize the repulsive wall of the potential. Thus it is clearly 
unsuitable for the low-temperature regime as shown, for example, experimentally by 
Losert et al. (1988). However, even at high temperatures, difficulties remain. The 
dynamical approximations of the theory, for instance, are most questionable at high 
energies. For example, as discussed by Rapp and Kassal (1969), at high Tthe ‘most 
effective’ collision energies, about &(u*)~, are often so large that the DWA is invalid. 

In summary our belief is that the classical theory, because of both the crudity of its 
potential energy function model (e.g. table 1) and of its dynamical and statistical 
approximations, is unsuitable as a framework for analysing VET data. Its main value 
today is pedagogical. 

3. Modern theories of gas phase vibrational energy transfer 
We next turn to modern techniques for computing VET rates based on ab-initio 

PESs and advanced quantum collisional methods. While implementation of these 
techniques has been performed by a number of workers (for example Schinke and 
Diercksen 1985, Schw’enke 1988, Schwenke and Truhlar 1988, Cacciatore and Billing 
1992 and Kolesnick and Billing 1993), here we focus on a particularly excellent example 
of this rigorous quantum approach due to Banks et al. (1986). These workers determine 
the de-excitation rate constants k,, ,(T) for molecular nitrogen by He isotopes at 
temperatures < 300 K. Their methods illustrate the state of the art in the theory of gas 
phase VET and thus differ sharply from the relatively primitive procedures reviewed in 
§ 2. 

The procedure of Banks et al. (1986) consists of the following steps. 

Step 1. Determination ofthe P E S .  Points on the He-N, PES were computed using 
the coupled electron pair (CEPA) electron correlation method. The PES, 
in addition to being determined as a function of the atom-diatom centre- 
of-mass separation and the orientation of the diatom, was also determined 
as a function of the diatom internuclear separation. (As-emphasized in 
Q 2.6.2, this inclusion of internuclear separation dependence is necessary 
since otherwise the PES is not expected to reproduce accurately the 
vibrational forces.) Specifically, the PES was computed at three values of 
the internuclear separation, the equilibrium bond length and the two most 
probable separations in the u= 1 state. The ab-initio PES, in order that it 
be suitable for the collisional calculations, was then fitted to an analytical 
expression. 
Evaluation of cross-sections. Using this ab-initio PES, state-to-state 
rotational-vibrational cross-sections were evaluated using the highly 
accurate centrifugal sudden approximation (CSA) scattering method. 
(Two less rigorous treatments of the collision dynamics were for purposes 
of comparison also implemented.) 
Evaluation of the rate constant. The final step consists of performing 
rigorous Boltzmann averages over the state-to-state cross-sections to 
obtain the u =  l + u = O  rate constant kl,o(T). 

These evaluations led to rate constants which compare well with 
experiments (Banks et al. 1986). What is particularly encouraging was the 
ability of the CEPA-CSA method to reproduce the observed variations in 
the rate constants with temperature, which were approximately two 
orders of magnitude. 

Step 2. 

S tep  3. 
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382 D. W. Miller and S. A. Adelman 

4. The isolated binary collision model 
The theories of VET discussed so far assume binary collision dynamics and thus are 

restricted to low-density gases. We conclude this review with a brief discussion of 
theories which apply at elevated densities, particularly liquid phase densities. 

It is important to note that most of the simple energy-transfer systems liquefy only 
at cryogenic temperatures. Consequently for these systems, in the liquid phase, 
vibrational excitation occurs at a negligibly slow rate (since collisions with incident 
energy which exceeds the threshold energy ho, are very rare at low temperatures) and 
experimental studies of VET are restricted to VER. Additionally, the assumptions 
which underlie classical VET theory (5 2) are singularly inappropriate in the low- 
temperature regime. Thus, to treat VER in liquids, new theories based on assumptions 
tailored to the physics of the low-temperature regime are required. 

The currently most widely used theory of VER in dense fluids is the IBC model. The 
IBC model was developed by Herzfeld and Litovitz (1959), Davis and Oppenheim 
(1972) and Delalande and Gale (1979), as well as others. A comprehensive review of the 
IBC model had been provided by Chesnoy and Gale (1984). Useful shorter summaries 
(Oxtoby 1981a, b, Harris et al. 1990) are also available. 

The problem of developing theories of liquid phase VER is difficult since the process 
is mediated by many-body interactions. Within the IBC, much of this difficulty is 
bypassed by assuming that the collisions which determine TI may be approximated 
(Herzfeld 1962) by isolated binary encounters and thus treated by the methods of gas 
phase scattering theory. Given this hypothesis, the observed large enhancement in VER 
rates in the liquid, relative to the gas phase, is attributed solely to the greater frequency 
of collisions in the liquid. These assumptions lead directly to the following IBC model 
form for the liquid phase rate constant kliq( 'I; p)  = k , ,  o( T )  x T ;  l: 

kliq(T ~)=P(T)vtiq(T P I T  (4.1 ) 

where P(T) is the gas phase relaxation probability per collision and vliq( 7; p )  is the liquid 
phase collision frequency. 

We mention in passing that the IBC model has been the subject of continuing 
controversy (for example Fixman 1961, Zwanzig 1961, Velsko and Oxtoby 1980 and 
Dardi and Cukier 1991). Since this controversy has often been reviewed in the 
literature (for example, Harris et al. 1990) we shall not discuss it further here. 

Despite the controversy over the theoretical foundations of the IBC model, the 
factorized form of the rate constant given in equation (4.1) has a very strong empirical 
foundation (for example Chesnoy and Gale 1984, 1988). The IBC model was originally 
introduced (Herzfeld and Litovitz 1959, pp. 407417, especially table 95.1) to explain 
the fact that while, individually, the liquid and gas phase values of vary greatly, as 
one changes system and thermodynamic state, their ratio varies over a much narrower 
range and, moreover, is of the same order of magnitude as the ratio of the density of the 
liquid to that of the gas. This experimental fact motivated the IBC model form for 
/qiq(T p)  (equation 4.1). 

In early formulations of the IBC approach (Herzfeld and Litovitz 1959), vliq was 
approximated using semiempirical cell models, for example the model proposed by 
Madigosky and Litovitz (196 1). These cell models have, however, been superseded by 
more realistic models for vliq based on the solute-solvent pair correlation function 
(Davis and Oppenhein 1972, Delalande and Gale 1979, Chesnoy 1984). These pair 
correlation models assume firstly that the solute and solvent molecules are spherical 
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Vibrational energy transfer in jluids 383 

and secondly that VER is localized in the repulsive part of the solute-solvent potential 
at a critical radius R*. 

These assumptions yield the current form of the IBC rate expression (Davis and 
Oppenheim 1972) 

where gliq(R) is the spherical molecule liquid phase solute-solvent pair correlation 
function and ggas(R) is the corresponding gas phase function and where kgas (T )  is the gas 
phase rate constant. A practical method for implementing equation (4.2), due to 
Delalande and Gale (1979), is widely used to interpret the density dependence of 
observed VER rates. This method is described in detail by Chesnoy and Gale. 

5. A molecular theory of liquid phase vibrational energy relaxation 
Because of the primitive nature of the assumptions (spherical molecules, and energy 

transfer localized at the collision radius R*) underlying the current form of the IBC 
model, it is unlikely that this model will provide a generally satisfactory basis for the 
interpretation of observed VER rates. This point is illustrated, for example, by the work 
of Chatelet et al. (1983) who applied the IBC model to the interpretation of the density 
dependence of T, for molecular hydrogen (a system for which the standard IBC 
assumptions seem relatively reasonable). They found that, to fit the IBC expression 
(equation 4.2) to experiment, a significantly temperature-dependent Lennard-Jones 
diameter is required. 

In this section we summarize a new first-principles theory of fluid phase VER 
developed by our research group (Adelman and Stote 1988, Adelman et al. 1991, 
Adelman et al. 1993a-c). This theory which is based on the physical principles 
(Adelman 1983, Adelman et af. 1993a, b) of our theory of chemical reaction dynamics in 
liquids is, we believe, likely to give a far better account of the temperature, density and 
isotope dependences of VER rates than that provided by the available (Chesnoy and 
Gale 1984,1988) IBC models. A detailed, but non-mathematical account of the theory, 
as well as many references to the experimental VET literature are available in Adelman 
et al. 1993b). 

The assumptions behind the present theory, described in detail elsewhere (Adelman 
et al. 1993a, b), are tailored to fit the physics of the low-temperature regime, where the 
energy relaxation dynamics (because of Boltzmann weight factors) is dominated by 
low-energy collisions. Thus, while some of the results of the present theory resemble 
those of the classical theory, the physical picture and assumptions underlying the 
present theory are radically different from those of classical VET theory. 

The basis of the present theory is the following expression for the relaxation time TI 
(Oxtoby 1981a, b, Adelman and Stote 1988, Adelman et al. 1993a-c); 

TI = p- l(o,), (5.1) 
where B(w) is the friction kernel of the relaxing solute normal mode and where wI is its 
liquid phase frequency. 

We evaluate P(w) within our partial clamping model (Adelman 1984, 1987), which 
assumes that the excursions of the relaxing mode are restricted to small amplitudes. 
(Note that this small-amplitude assumption is very different from the fixed-oscillator 
assumption of classical VET theory. The small-amplitude assumption is reasonable if 
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384 D. W. Miller and S. A. Adelman 

low-energy collisions dominate the energy relaxation dynamics.) Within the partial 
clamping model, the friction kernel is given by 

P(o) = (k,T)-' Irn (2@)$), cos (ot) dt, (5.2) 
0 

where (@(t)$), is the autocorrelation function of the fluctuating generalized force 
exerted by the solvent on the coordinate of the relaxing solute mode conditional that 
this coordinate is fixed at its equilibrium value. 

The present theory may be implemented via a molecular dynamics simulation in 
which the relaxing solute mode is fixed at equilibrium while all other degrees of freedom 
of the solution are allowed to move freely subject to this single constraint. Such 
constrained molecular dynamics implementations of the present theory have been 
reported elsewhere (Adelman and Stote 1988, Whitnell et al. 1992, Benjamin and 
Whitnelll993). Alternatively the theory may be implemented by analytical procedures. 
We next describe the analytical approach focusing, for simplicity, on the prototype case 
of a diatom relaxing in a monatomic solvent. (Molecular solvents have been discussed 
elsewhere (Adelman et al. 1993a-c).) 

This analytical approach is based on the fact that, if o, is sufficiently large, an 
approximate form for /?(o) which realistically describes only its high-frequency wings 
suffices. These wings, however, depend only on the short-time part of (@(t)@), which 
may be approximated (Adelman et al. 1993ax) by the following Gaussian model: 

where 

A comparison of equations (5.1H5.3) yields the desired result for TI: 

(5.4) 

To evaluate Ti from equations (5.4) and (5.5) we require expressions for wl, ( & 2 ) o  
and <$z)o. The required expressions have been derived elsewhere (Adelman and Stote 
1988, Adelman et al. 1993a-c). We note here that the expressions permit evaluation of 
Tl from molecular properties and from the solute-solvent site-site interaction 
potentials and equilibrium pair correlation functions. The latter may be evaluated as 
solutions to fluid phase integral equations. 

The theory therefore provides a practicable (Adelman et al. 1991) Jirst-principles 
evaluation of the liquid phase rate constant k(T,p). (In contrast, the IBC model is 
semiempirical since this model requires as input the experimental gas phase rate 
constant.) 

The molecular theory has been applied (Adelman et al. 1991) to model Lennard- 
Jones solutions designed to simulate molecular iodine in fluid xenon at T = 298 K and 
molecular bromine in fluid argon at T=295 and 1500K. The rate constants 
k(7;p)-  T;' were computed as functions of density, from densities ranging from the 
ideal gas to the dense fluid regime. For the Br,-Ar solutions, the rates display 
superlinear deviations from the low-density extrapolations which are qualitatively 
similar to those found experimentally (Chesnoy and Gale 1984,1988) for simple fluids, 
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For the I,-Xe solution the molecular theory predicts a 'non-classical' sublinear 
deviation in the density dependence of the rate constant. 

In addition to  providing a computational algorithm for TI, the theory provides 
qualitative insights. For example, the theory provides a molecular basis for the IBC 
hypothesis (see equation 4.2) that k(7; p)  may be factorized into density-independent 
and density-dependent contributions. This factorization results from the fact (Adelman 
et al. 1991) that (co2), defined in equation (5.4), is found to be nearly independent of 
density over the whole range studied. As a consequence it follows from equation (5 .9 ,  
from the definition k(T, p ) =  T ;  ', and from the fact that co, is also nearly independent of 
density, that 

where pk,a,(T)=limp,o [k(T,p)] .  Note that, if one makes the formal correspondence 
($-i)o-pg(R*), then the molecular theory result, equation (5.Q and the IBC result, 
equation (4.2), become identical. 

Despite this formal similarity, the rate expressions in equations (4.2) and (5.6) 
predict significantly different isothermal density dependences. The difference arises 
because, in contrast with the IBC model, within the molecular theory the anisotropy of 
the solute molecule is treated realistically and the collisions are not assumed to be 
localized at  a critical radius R*. As importantly, the factorized form of equation (5.6) 
emerges as a consequence of a fundamental molecular level analysis (Adelman et al. 
1993a-c) while the factorized form of equation (4.2) derives from the basic IBC 
hypothesis equation (4.1). 

We finally note that realistic implementations of the present theory, based on PESs 
of the type described by Banks et al. (1986), are currently under way. 
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